2 δ þֺ

 

֯δִ֮ ע ֻ֮֟ ֵ ï™ ׳֮ ׳֮ ã֮ ã֮Ӵ ߾ δ ֵֻ֟ ֵ | δ ָ ֆ ֵֻ֟ ֵ - , ֻ, ־ |

1.֯δ - ֯δ ߮ - ܵ֟, ܵ֟ ֮ | ֮ܵ ӓ׮ ׾ֵ ܵ֟ | ָ ׬֖֮ ׾ֵ ܵ֟ ָ ֻ֖֮ ׾ֵ ֮ 1 ( דפ׾ֆ ꕕ ִ | ֤ ׸ ׾ֆ ִꕕ ִ | ֤ ׸ ֻ ׾ֆ ִӟ ִ | (. 267-268)) |

ܵ֟ ߮ - ֑֮, ִ֬ ™ | ֮ פ ֮ ֟ | ֻ ß ֢ ãׯ֟ , ד֟ | ֮ ָӴ ׻ֵ ܵ֟ פ ֮ 2 (פ , ߵ֤ߵ ƾꕕ ꕕ1 | (ס. . 16) | ֑֮ܵ֟ ׫ܵ õ õ ֤־֟ | (. . . . 118 .)) ָ ֑֮ ܵ֟ | ™ ܵ֟ ֵֻ֟ ֻ֮ ֑֮ ָߟܵ֟ | ֣ ߓ ו֮֟ ֵܵ և ֟ ֲ ִ֬ ܵ֟ |

ܵ֟ ߮ - ָߟ, ㌟ ܵ֟ | ߮Ӵ Ο : ֑֮, ִ֬ ™ ߮ ָ | ֑֮ ָߟܵ֟ δ ־ã, ֻ, ןֻֿ ֻֿ ָ ִ߯ ָ֮֮ ָ ָ ָ ׮ֻ֮ ָ ֵֻ֟ ֵ , ו ׻ֵ סָֻ ֣ 18-35 ֵ | ֵֻ֟ ֻ֮ ֑֮ ㌟ܵ֟ ָ ™ ָߟܵ֟ δ ״ֻ֟ , ֣ ֑֮ ™ ָߟ ߓ ֲ ֮ ִ֬ ָߟܵ֟ |

 

֑֮ ָߟܵ֟ ԟ-Ӿԟ ԟ ׿ ֮ ָ ֟ ֟ ֑֮ ㌟ܵ֟ δ | ֵֻ֟ ֻ֮ ֑֮ ܵ֟ܵ֟ ™ ㌟ܵ֟ δ ߓ ֲ ֮ ִ֬ ㌟ܵ֟ |

֑֮ ㌟ܵ֟ (+) ֑֮ ܵ֟ܵ֟ ƻ֟ , ֣ ֵֻ֟ ֻ֮ ֑֮ ָߟ֮֮ ™ ܵ֟ܵ֟ ߓ ֲ ֮ ִ֬ ܵ֟ܵ֟ ꤺ |

֑֮ ܵ֟ܵ֟ ߮ ָ ԟ Ӿԟ ׿ ֮ ִ ִԦ, ִԦ, ߾ ֿ Τ ֣ ןš ןš ֮ïן δ ״ֻ ֮ ׿ : ߮ ָ ԟ Ӿԟ Ƶ | ָ֯ ֯ ׿ִ ֻ ִֵ, ãן ֬֬־ֵã֮ δ ֣ ™ ׾ֳ ן֓ ״ֻ :߮ ָ ԟ Ӿԟ ׿ ֮ ֑֮ ָߟ֮֮ ֟ | ֵֻ֟ ֻ֮ ֑֮ ㌟֮֮ ™ ָߟ֮֮ δ , ֣ ߓ ֲ ִ֬ ָߟ֮֮ |

֑֮ ָߟ֮֮ ԟ Ӿԟ ֑֮ ㌟֮֮ | ֵ֟ ֻ֮ ֑֮ ֮֮֮ ™ ㌟֮֮ δ , ֣ ߓ ֲ ִ֬ ㌟֮֮ |

֑֮ ㌟֮֮ ֑֮ ֮֮֮ | ֑֮ ֮֮֮ ߮ ָ ԟ Ӿԟ ִ ֬ ߾, ׮ꤸ׿, Ο ֮ïן, ָֻ׿, ֻ ִֵ ֿ, ׿ֵ ״ֻ ֮ ׿ : ߮ ָ ԟ Ӿԟ ִ ִԦ ִԦӲӬ ֑ ׾ֳ֯ן֓ ״ֻ Ƶ | ָ ֮ ׿ : ߮ ָ ԟ Ӿԟ

ִֻ֖֮ ֙־ ױ ִֻ֖֮ ״ֻ | ָ ֯ ׿ ԟ ֻ֖֮֯δ ™ ֮֮֮ | ֑֮ ™ ֮֮֮ ֬־֟ ֲ ֮ ִ֬ ֮֮֮ ƻ֟ |

( . 19-26 ֣ סָֻ ֣ 81-51)

 

2. ֻ֯δ - ߾ ׸ ֮֮ ׻ֵ ָ ֯ ֻ ֵ ֵ , ו γ ָ֯ - ָ Ӥ ֟ ֿ֯Τ ָ ֿ֯Τִ ֮ ׻ֵ ֻ ֟ ִֵ ƻ֟ | ֻ ֲ , ׾ֳ ׸ | ܵ֟ (ԟ ֑֮ ㌟ܵ֟ δ) ִֵ ־׻ | ܵ֟ ־׻ֵ ˾ | ֟ ˾ ß, ֟ ß ־ ֜ ־ ֻ | ֻ ֡ פ | ֟Դ֮ ִֻ֮ ֡ ә ֮ ֟ | ָ ֻ ״׮֙ ֻ ״׮֙, ־ 37 (31/77) , ß 5(185/539) ֣ ˾ (2880/3773) ֛ | ־׻ ִֵ ֻ δ |

( . 65, ֣ ן. . 4, 284-288)

ֻ֯δ ׻ִֺ ָ ---

 

֡ פ = 30 = 24 ә

= 2 ֻ = 48 ״׮֙

ֻ = 38|| ־ = 24 ״׮֙

־ = 7 ß = 37 31

77

ß = 7 ˾ = 5 185

539

˾ = ܵ֟ ־ֻ = 2880

3773

 

־׻ = ܵ֟ (...) ִֵ

ִֵ = ָ ֿ Τ ָ ֿ֯Τִ ֮ ֟ ֮ ֻ

ִ֮ þã (֮µ ) ָ ׮ֻ֮ ו֮֟ ִֵ ֟ ˾ Ɵ | Դ ˾ ܵ 3773 և , ֵ㌟ δָ֮ ָ ֟ - 2x38(1/2) x 7 x 7 = 3773 | ֡ (24 ә) 3773X30=1,13,190 ˾ | δ ״׮֙ 3773/ 48 = 78.6 ֟ , ֬׮ ֮֟ ָ |

Դ ִֵ ָ ׳ִ֮ , ֣ ׳ִ֮ ִֵ ֻ ־׻ ־׻ ֻ ִ | (. 67) ָ ִ ִ֮֟: ܵ֟ ־׻ δ , ָ ֲ ִ֣߯ ֮ ܵ֟ ־׻ δ ֮ ׻ֵ ֵ | (. 69)

Ӧ פ , , , ߮ ֮, ֮ , ӓ , , , ֵ, ֵ ֵ, ֣ ָ ֟ δ , ֩ ֩, ׻֮ ׻֮, ֻ ֻ, י י, , ִ ִ, 1 ( ִ ܵֆ ִ ֕־ן ׸ӿ֯ ֻ׾־ִָ ֵ ֟ |), , ֟ ֟, ֣ ֻ֟ ֻ֟ δֿ: | ױ ֟ δ ( ׿ָ:ӯ), ß֯׻֟ (ß֯׻) ֻ֯ (ד) | ָ ָïָ ֻ֯ δ ֟ , ־ 段 2 ( ןֻ֯ע ָ | ָ ָïָ ֟ (84)31 Logarithm ָ ֻ ֚ (60) δ ܵ ֟ |) | ֪ׯ ֵפ ֻ ֮ֆ ß ήֳִ ֵ, ֣ׯ ܵ֟ ֮ ֮֟ ֮ ׻ֵ ֲ և | ֲ ܵ֟ (ִ֬) δ | ָ ™ ܵ֟ δ ָ ֮-ִ֯ ֟ ֵ |

֯δִ ֵֻ֟ ֻ֮ δ ֮ (ԟ ƕָ ) ִ Ƹ ֮ ִ ֳ ֟ פ ߟָ ֮ Ӝ (ו֮ ӛ ) ָ ִ ӛ Դ ׮ֻ | ָ֯ ִß ׮ֻ֮ ו֮֟ ֻ ֟ߟ , ־ָֻ Ɵ | ܵ ֟ 45 δ ֟ ָ֤ ־ָֻ δ 45 δ ֟ײ ־ 47 δ |

־ָֻ ܵ֟ י ִֵ ֟ ָ ָֻ δ ֟ , ו ߯-ִ ֮ ֟ | ָֻ ܵ֟ י ִֵ ֟ ָ ֻ֯ δ ֟ | , ־, ֵ ֵ ã֟ δִ ֻ֯ ֵ | ߾֦ δ-κִ ֣־ֿ ִֻ ֵ ֵ | ָ ֲ ֟ Ɵ | ִֻ֯ ִָ ִָ ׯ ֮ ֻ ׯ | ״ֻ ֻ |

3. ֯δ - ֻ ן ָ Ɵ ו :׾ֳ , צ ָ Τ ֣ ӟ, פ ֬ Ɵ | ׾ֳ ָ ו֮֟ ֿ ֮ ֿ ֯Τ Ɵ | ֮֮֮ ָ ֮֮ Ӭ, ֚ ֮֮ Ӭ ֮֮ Ӭ, ֚ ֮֮ Ӭ (י, 陸), ֚ 㙸 ָ, ֚ ָ ָ , ֚ ָ ִ ֳӲӬ ֻ, ֚ ִ ֳӲӬ ֻ ִ֬ ֳӲӬ ֻ, ֚ ִ֬ ֳӲӬ ֻ ֑֮ ֳӲӬ ֻ, ֚ ֑֮ ֳӾӬ ֻ ԳӲӬ ֻ, ֚ ԳӲӬ ֻ ׻ (), ֚ ׻ֆ , ֚ ־ (־-֬) ֚ ־ ߮ ָ - , δ ֟օ ָ ו δ ֵֻ֟ (ד) |
ӓ δ , ׯֻ Σִ ξ֟ ֵ ֟ | ָ ־֟ ִ ו ִֻ ִ֮ ֮µ δ ִֻ ֟ ƻ֟ | ֮µ, ןֵՓ, ָ ָ߸ Ʈ ֣ ֟׮ֵ ׮־ ָ δ ׻ֵ ֟ | ߯, ִ, ־ԟ, , ֤, , ֟ (), () δ δ ֟ , ֣ ָ, ֿ, , , ֙, ,ֵ֮, , ƻ, ֻ, ׌, ָ, ֮, , ֻ, , ִָ, Ӥ׳, ߚ, ֣ ֮µ ׮־ ָ, ֮פ δ ֟ ֟ | ֤, ֤ ׾ß (׻ß), ׾ßֵ ֣, ֣ , ӛ, , ֮, ֻ ֻ, ƕָ ӛ ֣ ָ ֮ | (ן.. 1,98-116)

 


׾ֳ ӿ= ָ

֮֮֮ ָ = ֮֮ Ӭ

8 ֮֮ Ӭ = ֮֮ Ӭ

8 ֮֮ Ӭ = 㙸

8 㙸 = ָ

8 ָ = ָ

8 ָ = ִ . . ֻ

8 . . . . = ִ֬ ,, ,, ,,

8 . . . . = ֑֮ ,, ,, ,,

8 . . . . = Գ״ ֻ

8 . . ֻ = ׻

8 ׻ =

8 = ־

8 ־ =

(500 = δ)

6 = ֤

2 ֤ = ׾ß

2 ׾ß = ֣

2 ֣ =

2 = ӛ, , ֮, ֻ

ֻ

2000 ӛ =

4 = ֮


 

δ ֟, δ ָ ߮ ߮ ָ | δ ֮ ԟ ƕָ ִ, Ƹ ֵ ֻ֯ ִ δ ׮ֻ֮ ָ ָ ֻ֯δִ ֟ ֵ | ֻ֯ ԓ1 ( ׿ ו֮֟ ָ ָָ ֬ ֬ , ֮ ׿ ԓ ֟ | ) δ ֻ֯ ָïָ Ʈָ δ ֟ | 擵 Οָ ֮ ֮ Ɵ | ֻ֯ ܵ֟־ ֯δ ־ ָ֮֟ ֻ֯ ו֮֟ ԓ ܵ֟־ ֯δ, ֮ ָïָ ָ ֟ δ ֟ | ֟ ֟־ δ , ןֵ ֬ ׾ßָ δ | ֟ ֟־ δ , ןֵ ֬ ׾ßָ δ | ֟ ֟˯Οָ ֣ ֟˸ ֮ Ɵ |

ֲ ԟ ֻ, ָ, 擵, Οָ, ֮, ֟, ֟˯Οָ ִ ֮ , ו֮ ֵ ֣־ָ , ֻ, ߮ ֆ ֵֻ֟ ֵ δӴ ֵ | ֵ֟ ֯δִ ֮ ܵ, ֻ֯δִ ֮ ִֵ ֣ ֯δִ ֮ ֿ֯Τ ִ֮֗ Ƌ |

4. ־֯δ - Ԍ ߮ ָ δ ֮ ־֯δ ( 5) | ׳ֵ֯ ו ã֮ ã֮ , ֻ δ ֵֻ֟ ֵ δ ֮ ־֯δ ִ֗ Ƶ |